ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 2: Intelligent Agents, part 2

L
Agent Architecture

- All agents have the same basic structure:
- accept percepts from environment, generate actions

- Agent = Architecture + Program
- A Skeleton Agent:

function Skeleton-Agent(percept) returns action
static: memory, the agent's memory of the world

memory < Update-Memory(memory, percept)

action <— Choose-Best-Action(memory)

memory < Update-Memory(memory, action)
return action

- Observations:

- agent may or may not build percept sequence in memory (depends on
domain)

- performance measure is not part of the agent; it is applied externally to
judge the success of the agent

Table-driven architecture

- Why can't we just look up the answers?

- The disadvantages of this architecture
- infeasibility (excessive size)
- lack of adaptiveness

- How big would the table have to be?
- Could the agent ever learn from its mistakes?
- Where should the table come from in the first place?

function Table-Driven-Agent(percept) returns action
static: percepts, a sequence, initially empty
table, a table indexed by percept sequences, initially fully specified

append percept to the end of percepts
action < LookUp(percepts, table)
return action

Agent types

Simple reflex agents

are based on condition-action rules and implemented with an
appropriate production system. They are stateless devices which
do not have memory of past world states

Model-based reflex agents (Reflex agent with state)

have internal state which is used to keep track of past states of the
world

Goal-based agents

are agents which in addition to state information have a kind of goal
information which describes desirable situations. Agents of this kind
take future events into consideration

Utility-based agents

use internal estimate for performance measure to compare future
states

A Simple Reflex Agent

We can summarize part of
the table by formulating
commonly occurring patterns
as condition-action rules:

Example:
if car-in-front-brakes
then initiate braking

Agent works by finding a rule
whose condition matches the
current situation

rule-based systems
But, this only works if the
current percept is sufficient
for making the correct
decision

)

/Agent)

Sensors =

What the world
is like now

JUSWIUOJIAUT

| |
@ondition —action ruIe@—» ggﬂtl da(étc')ol':o'w
& Effectors

function Simple-Reflex-Agent(percept) returns action
static: rules, a set of condition-action rules

State <— Interpret-Input(percept)
rule <— Rule-Match(state, rules)
action <— Rule-Action[rule]
return action

Example: Reflex Vacuum Agent

4 Agent) [b

Sensors =

What the world
is like now

JUSWUOJIAUT

|
— - What action |
@ondmon—actlon rules)—- should do now

'

Effectors)

function REFLEX-VACUUM-AGENT([location, status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Model-Based Reflex Agent

Updating internal state Seniors-d

)

requires two kinds of encoded (Flow the world evolves y—s=] VVH! the world

knowledge o
knowledge about how the world (What my actions do _5,
changes (independent of the 2
agents’ actions) ?D
knowledge about how the | 3

— . What action |

agents’ actions affect the world ((Condition-action rules J—mm-| g 7G0T

But, knowledge of the internal Agent *

state is not always enough &g Sl b

how to choose among

alternative decision paths (e_g_, function Reflex-Agent-With-State(percept) returns action

where should the car go at an static: rules, a set of condition-action rules
intersection)? State, a description of the current world
Requires knowledge of the state <— Update-State(state, percept)

goal to be achieved rule <— Rule-Match(state, rules)

action < Rule-Action[rule]
state <— Update-State(state, action)
return action

S
Goal-Based Agents

- Reasoning about actions
- Reflex agents only act based on pre-computed knowledge (rules)

- Goal-based (planning) agents act by reasoning about which actions
achieve the goal

- Less efficient, but more adaptive and flexible

(Sensors ==
State
(How the world evolves i‘g’ﬂﬁ‘gﬁgf orld
¥ m
: What it will be like =<"
@hat my actions do if 1 do action A 3
s |
3
D
' = |
m What action | -
._ ® should do now

Cgent Effectors

Goal-Based Agents (continued)

Knowing current state is not always enough
State allows agent to keep track of unseen parts of world
Agent must update state based on changes and its actions

Choose between potential states using goal

Can change goal without need to “reprogram” rules, for example a
new destination for the taxi-driving agent

Search and planning (coming soon)
concerned with finding sequences of actions to satisfy a goal.

contrast with condition-action rules: involves consideration of
future "what will happen if | do ..." (fundamental difference).

L
Utility-Based Agent

- Utility Function
- A mapping of states onto real numbers

- Allows rational decisions in two kinds of situations
- Evaluation of the tradeoffs among conflicting goals
- Evaluation of competing goals

(m Sensors =
(Sate)— '}
(How the world evolves ygnﬁétggwwo"ld
(Wh at my actions dog V\ilrhla(tki)t z‘;!(gli:r?ll\ike

e

What action |
should do now

v

Cge nt Effectors

JUBWUOJIAUT

S
Utility-Based Agents (continued)

- Preferred world state has higher utility for agent

- Examples:
- Quicker, safer, more reliable ways to get to destination
- Price comparison shopping
- Bidding on items in an auction
- Evaluating bids in an auction

- Utility function: U(state) gives measure of “happiness”

- Commonly: search is goal-based and games are utility-
based.

Shopping Agent Example

Navigating: Move around store; avoid obstacles

Reflex agent: store map precompiled.

Goal-based agent: create an internal map, reason explicitly about it, use

signs and adapt to changes (e.g., specials at the ends of aisles).
Gathering: Find and put into cart groceries it wants, need to
induce objects from percepts

Reflex agent: wander and grab items that look good.

Goal-based agent: shopping list.

Menu-planning: Generate shopping list, modify list if store
is out of some item

Goal-based agent: required; what happens when a needed item is not
there? Achieve the goal some other way. e.g., no milk cartons: get canned
milk or powdered milk.

Choosing among alternative brands
utility-based agent: trade off quality for price.

B
Learning Agents

- Four main components
Performance element: the agent function

Learning element: responsible for making improvements by observing
performance

Critic: gives feedback to learning element by measuring agent’s
performance

Problem generator: suggest other possible courses of actions
(exploration)

Performance standard

changes
2|

Learning ﬁ '~' Performance
element o T
KNOW

lement

quswu

r— n
[Problem |

Search and Knowledge Representation

Goal-based and utility-based agents require representation of:
states within the environment

actions and effects (effect of an action is transition from the current state to
another state)

goals
utilities
Problems can often be formulated as a search problem
to satisfy a goal, agent must find a sequence of actions (a path in the state-
space graph) from the starting state to a goal state.
To do this efficiently, agents must have the ability to reason
with their knowledge about the world and the problem domain
which path to follow (which action to choose from) next

how to determine if a goal state is reached OR how decide if a satisfactory
state has been reached.

Intelligent Agent Summary

An agent perceives and acts in an environment. It has
an architecture and is implemented by a program.

An ideal agent always chooses the action which
maximizes its expected performance, given the percept
sequence received so far.

An autonomous agent uses its own experience rather
than built-in knowledge of the environment by the
designer.

An agent program maps from a percept to an action and
updates its internal state.

Reflex agents respond immediately to percepts.
Goal-based agents act in order to achieve their goal(s).
Utility-based agents maximize their own utility function.

