
ARTIFICIAL
INTELLIGENCE
Russell & Norvig
Chapter 2: Intelligent Agents, part 2

Agent Architecture
•  All agents have the same basic structure:

•  accept percepts from environment, generate actions
•  Agent = Architecture + Program
•  A Skeleton Agent:

•  Observations:
•  agent may or may not build percept sequence in memory (depends on

domain)
•  performance measure is not part of the agent; it is applied externally to

judge the success of the agent

function Skeleton-Agent(percept) returns action
 static: memory, the agent's memory of the world

 memory ← Update-Memory(memory, percept)
 action ← Choose-Best-Action(memory)
 memory ← Update-Memory(memory, action)
 return action

Table-driven architecture
• Why can't we just look up the answers?

•  The disadvantages of this architecture
•  infeasibility (excessive size)
•  lack of adaptiveness

•  How big would the table have to be?
•  Could the agent ever learn from its mistakes?
•  Where should the table come from in the first place?

 function Table-Driven-Agent(percept) returns action
 static: percepts, a sequence, initially empty
 table, a table indexed by percept sequences, initially fully specified

 append percept to the end of percepts
 action ← LookUp(percepts, table)
return action

Agent types
• Simple reflex agents

•  are based on condition-action rules and implemented with an
appropriate production system. They are stateless devices which
do not have memory of past world states

• Model-based reflex agents (Reflex agent with state)
•  have internal state which is used to keep track of past states of the

world
• Goal-based agents

•  are agents which in addition to state information have a kind of goal
information which describes desirable situations. Agents of this kind
take future events into consideration

• Utility-based agents
•  use internal estimate for performance measure to compare future

states

A Simple Reflex Agent

function Simple-Reflex-Agent(percept) returns action
 static: rules, a set of condition-action rules

 state ← Interpret-Input(percept)
 rule ← Rule-Match(state, rules)
 action ← Rule-Action[rule]
 return action

•  We can summarize part of
the table by formulating
commonly occurring patterns
as condition-action rules:

•  Example:
 if car-in-front-brakes

 then initiate braking
•  Agent works by finding a rule

whose condition matches the
current situation
•  rule-based systems

•  But, this only works if the
current percept is sufficient
for making the correct
decision

Example: Reflex Vacuum Agent

Model-Based Reflex Agent

function Reflex-Agent-With-State(percept) returns action
 static: rules, a set of condition-action rules
 state, a description of the current world

 state ← Update-State(state, percept)
 rule ← Rule-Match(state, rules)
 action ← Rule-Action[rule]
 state ← Update-State(state, action)
 return action

•  Updating internal state
requires two kinds of encoded
knowledge
•  knowledge about how the world

changes (independent of the
agents’ actions)

•  knowledge about how the
agents’ actions affect the world

•  But, knowledge of the internal
state is not always enough
•  how to choose among

alternative decision paths (e.g.,
where should the car go at an
intersection)?

•  Requires knowledge of the
 goal to be achieved

Goal-Based Agents
• Reasoning about actions

•  Reflex agents only act based on pre-computed knowledge (rules)
•  Goal-based (planning) agents act by reasoning about which actions

achieve the goal
•  Less efficient, but more adaptive and flexible

Goal-Based Agents (continued)
• Knowing current state is not always enough

•  State allows agent to keep track of unseen parts of world
•  Agent must update state based on changes and its actions

• Choose between potential states using goal
•  Can change goal without need to “reprogram” rules, for example a

new destination for the taxi-driving agent

• Search and planning (coming soon)
•  concerned with finding sequences of actions to satisfy a goal.
•  contrast with condition-action rules: involves consideration of

future "what will happen if I do ..." (fundamental difference).

Utility-Based Agent
• Utility Function

•  A mapping of states onto real numbers
•  Allows rational decisions in two kinds of situations

•  Evaluation of the tradeoffs among conflicting goals
•  Evaluation of competing goals

Utility-Based Agents (continued)
• Preferred world state has higher utility for agent

• Examples:
•  Quicker, safer, more reliable ways to get to destination
•  Price comparison shopping
•  Bidding on items in an auction
•  Evaluating bids in an auction

• Utility function: U(state) gives measure of “happiness”

• Commonly: search is goal-based and games are utility-
based.

Shopping Agent Example
•  Navigating: Move around store; avoid obstacles

•  Reflex agent: store map precompiled.
•  Goal-based agent: create an internal map, reason explicitly about it, use

signs and adapt to changes (e.g., specials at the ends of aisles).

•  Gathering: Find and put into cart groceries it wants, need to
induce objects from percepts
•  Reflex agent: wander and grab items that look good.
•  Goal-based agent: shopping list.

•  Menu-planning: Generate shopping list, modify list if store
is out of some item
•  Goal-based agent: required; what happens when a needed item is not

there? Achieve the goal some other way. e.g., no milk cartons: get canned
milk or powdered milk.

•  Choosing among alternative brands
•  utility-based agent: trade off quality for price.

Learning Agents
•  Four main components

•  Performance element: the agent function
•  Learning element: responsible for making improvements by observing

performance
•  Critic: gives feedback to learning element by measuring agent’s

performance
•  Problem generator: suggest other possible courses of actions

(exploration)

Search and Knowledge Representation

•  Goal-based and utility-based agents require representation of:
•  states within the environment
•  actions and effects (effect of an action is transition from the current state to

another state)
•  goals
•  utilities

•  Problems can often be formulated as a search problem
•  to satisfy a goal, agent must find a sequence of actions (a path in the state-

space graph) from the starting state to a goal state.

•  To do this efficiently, agents must have the ability to reason
with their knowledge about the world and the problem domain
•  which path to follow (which action to choose from) next
•  how to determine if a goal state is reached OR how decide if a satisfactory

state has been reached.

Intelligent Agent Summary
• An agent perceives and acts in an environment. It has

an architecture and is implemented by a program.
• An ideal agent always chooses the action which

maximizes its expected performance, given the percept
sequence received so far.

• An autonomous agent uses its own experience rather
than built-in knowledge of the environment by the
designer.

• An agent program maps from a percept to an action and
updates its internal state.

• Reflex agents respond immediately to percepts.
• Goal-based agents act in order to achieve their goal(s).
• Utility-based agents maximize their own utility function.

